AD-AT137 320 A DISTRIBUTED OPERATING SYSTEM DESIGN AND
DICTIONARY/DIRECTORY FOR THE ST..(U} NAVAL POSTGRADUATE
SCHOOL MONTEREY CA N F SCHNEIDEWIND ET AL. NOV 83

UNCLASSIFIED NPS54-83-015 £/G 9/2 NL

1.0 &8 K
L £ 2
= u o,
¥ 20
s =°

o

T2 T

m‘

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

T A B LA st B 00 L B et e
- e S A 1~
~

N Report Number — NPS54~83-015
o NAVAL POSTGRADUATE SCHOOL
I A e
™ Monterey, California
™
Q
<<
A it .w:‘-.v3 ‘“"w
£ ECT
L JAN2 71884
r'" 7
S A
A DISTRIBUTED OPERATING SYSTEM DESIGN AND
DICTIONARY/DIRECTORY FOR THE STOCK POINT
LOGISTICS INTEGRATED COMMUNICATIONS ENVIRONMENT
Norman F. Schneidewind
. Daniel R. Dolk
é‘ November 1983
|
T8 Final Report: 1 December 82 to 1 November 83
* g Approved for public release; distribution unlimited
Prepared for:

Fleet Material Support Office
Machanicsburg, Pennsylvania

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Commodore R. H. Shumaker David R. Schrady
Superintendent Provost

The work reported herein was supported by the Fleet Marerial Support Office.
Reproduction of all or part of this report is authorized.

This report was prepared by:

: %?@& r!.""scﬁmzulﬁé i DANIEL R. DOLK, Assistant Professor

Professor of Computer Science of Management Information Systems
Reviewed by: Releasgsed by:

S. ELSTEKR, Chairman Hlf/fm M. TOLLES
Department of Administrative Sciences Dean of Research

i1

{

) ™
<Jnclassified ..
SECUMTY CLASSIFICATION OF Thil PAGE (Then Date Entere)
INSTRUCTIONS
REPORT DOCUMENTATION PAGE ."wmgma FoRM
[7. COVY ACCELION NO] 3. RECIPIENT'S CATALOG NUMBER
NPS=54~83-015 AD - A137320
& TITLE (and Sublitle) 5. TYPR OF AEPOART & PEMOD COVERED
A DISTRIBUTED OPERATING SYSTEM DESIGN AND Final Report
* DICTIONARY/DIRECTORY FOR THE STOCK POINT
LOGISTICS INTEGRATED COMMUNICATIONS ENVIRONMENT | PERPOM4ING ORG. RERORT nuusER
AL . CONTRACY OR GRANT NUNBENE |
. Norman F, Schneidewind
Daniel R. Dolk
CRFOAMING ORGANIZATION NAME AND ADORE ::sgl.lgo-l.‘l:.l“ “ulno.l L
Naval Postgraduate School NOO36783PON3883
|__Monterey, California 93940
1. CONTROLLING OF FICE NAME AND ADDRESS 12. REPORT DATE
November 1983
Fleet Material Support Office 3. NUMBER OF PAGES
kg aC T e T e stk
[N N NAME & ADDRESSI ditforent frem Contrelling Office) 18. SECURITY CLASS. (of tAls report)
Unclassified

W
Y 2&"*‘&&' (ICATION/ DOWNGRADING

16, DISTRIBUTION STATEMENT (of this Repert)

Approved for public release; distribution unlimited.

17. ISTRIBUTION STATEMENT (of the ebstract sntered in Bleek 20, if ditferent from Report)

——— m—
4 18. SUPPLEMENTARY NOTES

P ———
19. KLY WOROS (Cont on alde i1 y and ldentity by blech number)

Local Computer Networks, Distributed Computer Systems, Operating System
Design, Dictiocnary/Directory Systems

‘aaﬁnc'r (Continwe en reverse side 11 nessvsary and (dentily by BIOSR Number)
R The problems and opportunities involved with desizning and using distributed

systems are discussed. This is followed by presenting a paradigm for the
distributed system design process. The paradigm is then applied to the
design of a distributed operating system for SPLICE. The major interface
between user and operating system is provided by the dictionary/directory
systen,

_‘4

DD ,jon'ys 1473 cormiow oF 1 wov 6813 OnsoLETR Unclassified

/N 0102- LK 014- 460! mucmm

‘ TABLE OF CONTENTS
Page number
. INTRODUCTION 1
°THE CHALLENGE OF DISTRIBUTED SYSTEMS 2
! °SYSTEM ENTITIES 3
°DISTRIBUTED SYSTEM PARADIGM 5
! °DISTRIBUTED SYSTEM DESIGN STRATEGY 30
| °FUNCTIONAL MODULES 31
°NETWORK OPERATING SYSTEM DESIGN 36
°OPERATING SYSTEM DESIGN OBJECTIVES 37
4 °INTERPROCESS COMMUNICATION 40
k °SCHEDULING 42
g °DEADLOCK PREVENTION 44
¥
: SMEMORY (RAM) MANAGEMENT 46
g °SHARED RESOURCES AND THE CRITICAL SECTION PROBLEM 48
g °USER INTERFACE SPECIFICATIONS 53
§ -User calls 53
§ -Justification for SPLICE Dictionary/Directory System (DDS) 54
: -Scope of DDS 56
g ~Contents and Logical Structure of DDS 58
-Distribution of the DDS 64
: -Environmental Dependency 67
°COMPUTER ARCHITECTURE 69
. °CONCLUSIONS AND RECOMMENDATIONS 71
°REFERENCES ‘ 76
, R
A !
Y i

PR :
8 e RS Cams YT

3a.

3b.

3c.

4a.

4c.

Sa.

Sb.

10.

11.

12.

13.

14,

15.

le.

17.

18.

19.

LIST OF FIGURES

Page number
Initial representation of objects in a system 9 ’
Associating names and functions with objects 9 .
Logical Ring 10
Logical Bus 10
Fully Connected Mesh 10
Object Communication Protocol for DEMOS and ROSCOE 14
Object Communication Protocol with Data and Control Links 14

Object Communication Protocol of Figure 4b Implemented on a bus 14

Interrupt Driven Object Communication Procedure
Tandem Operating System Link Procedure

Object Addressing Using Names

Object Control Structure (Two Instances)

Object Invocation and Data Paths (Two Instances)

17

17

21

25

26

Message Assignment to Ports and Use of Kernel to Process

Interrupts

Layered Operating System Design

Program Control Block Table

Ready List Data Structure

Buffer Allocation

Memory Map

Memory Map Table

Logical Structure Describing Data Resources

Logical Structure of Hardware Resources
(from [Allen et al 1982])

Logical Structure for Software, Transaction,
and Report Resources

Vector Interrupt Table

35
38
43
45 1
47
49
50

60

62

62

72

’
LIST OF TABLES

Page number

. 0. Local Network Performance Metrics 28
. 1. Data Element Attributes (from Allen et al [1982]) 58
2. File Entity Attributes 59

3. Selected Hardware Entities and Attributes 61

4. Selected Software Entities and Attributes 63
Document/Report Attributes 64

vii

INTRODUCTION

This report is a follow on to a previous report [Schneidewind 82].
It is assumed that the reader is familiar with that report. The primary
ocbjectives of this report are the following:
°Describe, specify and recommend an efficient, low overhead distributed
operating system design for SPLICE.
°Discuss the desirability of including a dictionary/directory system
(DDS) as a major component of SPLICE.

The report is organized around the following major themes:

We begin with a discussion of the opportunities and problems
involved with designing and using distributed systems. Since the field
of distributed systems is still evolving and design procedures for
developing these systems are not well understood, we provide a paradigm,
or model, of the distributed system design process, with emphasis on an
object-oriented network architecture approach. This model lays the
groundwork for the proposed distributed operating system design which
follows. In both the discussion of the paradigm and the operating
system design, emphagis is placed on the the use of message-based
interprocess communication as the vehicle for achieving distributed
control among the various functional modules which comprise SPLICE.
After providing a functional specification for a distributed operating
system, user interface specifications are provided, where the
dictionary/directory system (DDS) constitutes the major component. The
DDS is designed to provide information to both the user and system about
data and resources (i.e. objects) which exist in SPLICE, and to provide
names and addresses, so that these objects can be accessed in the

network. The report concludes with a discussion of the advantages and

disadvantages of a distributed operating system design and a description
of recommended steps for implementing a dictionary/directory system.

THE CHALLENGE OF DISTRIBUTED SYSTEMS

There are many interesting and challenging problems associated with
the design of distributed systems. These problems arise primarily
because a distributed system has many objects (e.g., software module,
processor) which operate autonomously. This independent mode of
operation is responsible for the increased effectiveness (e.g.,
increased speed of operation and reduced overhead) over a system with
centralized control. However, once the many objects are turned lcose,
80 to speak, without benefit of close supervision by the operating
system, many problems of coordination arise. This 'laissez faire'
operating environment presents challenges to the designer to find
solutions to the following problems:

°Procedures for interprocess and interprocessor communication and

control

°Naming and addressing of abjects

°Allocation of functions to modules and modules to processors

*Distribution of data across nodes of the network

°Specification of network topology

°Methods for deadlock prevention, avoidance, detection and recovery

‘Procedures for recovery from system malfunctions

°Specification of appropriate levels of performance

Although the list is incomplete, it is illustrative of the major

design isgue in distributed systems: achievement of coordination and

control of independent objects. Note that none of the problem areas are

exclusive to distributed systems - they are just more complex and harder

[—

to solve in a distributed system. Also, observe that, in general, these

! problems are not confined to a single network of objects, such as a

P o Sop(ot ot >

. local network or long distance network. Rather, a multiplicity of
networks may be used in an application or by an organization, so that
solutions must be found in the context of internetting, that is the
communication of data over diverse multiple networks. In the case of
SPLICE, this involves 62 local networks interconnected by the Defense
Data Network (DDN). A primary design objective of distributed systems
is to allow the user to utilize objects independent of their geograph-
ical location and form of implementation ([Watson 81 a)}. This means,
that except for a degradation in performance, it should be as convenient
for a user at the Naval Supply Center (NSC) Oakland to access the
Inventory Control Point (ICP) data base at Mechanicsburg, as it is to
access the data base on the local computer network at Oakland. The
remaining sections of this report describe the recommended design for a
SPLICE distributed cperating system and its associated data dictionary
function, which provides support for naming and identifying objects in
SPLICE.

SYSTEM ENTITIES

Many entities comprise a distributed system. These entities will be

used to describe ocur distributed system design methodology and

recommended distributed opeiating system design. Unfortunately, a

variety of definitions can be found for these terms in the literature.

| e oAt il it s e - . s

et s o VAT oainlto ekt ot i il

We define these terms below in accordance with their meaning in this

report.

*Object: anything intelligible or perceptible by the mind. A thing
serving as the focus of attention. An object has a name and
attributes. It could be, for example, a process, node,
processor, module or resource. It is synonymous with entity.

°Message: the unit of data transmitted between two objects.

°Functional: designed for or adapted to a particular need or activity.
°Functional Module (FM): an object which is functional (i.e., dedicated
to a specific activity such as terminal
management) .
*Components of an FM: Sub-Modules
-Input (generalizable)
=Output (generalizable)
-Processing (unique)
°Process: an FM in execution (Task is synonymous with process).
*Requestor: an FM which requests a service.
°Server: an FM which provides a service.
°Resource: a consumable (e.g., printer paper) or non~-consumable object
(e.g., memory) which is used to support the operation of
FMs.
°Node: a physical element of a network (e.g. processor) which connects
two physical communication links.
°Logical (virtual) link: an imaginary communication path hetween two
objects (FMs).
*Physical link: a physical communication path between two nodes.
°Logical Path: The desired route of a message, from sender to receiver,

independent of the actual physical path used.

4

i
z

°Physical Path: the actual route of a message from sender to receiver
through various physical nodes and data links.
°Connectivity: the number of object pairs which are directly connected
by logical or physical links, depending upon
circumstances, in a network.
°Accessibility: the number of objects which a given object can reach
directly (i.e., without going through intermediate
objects)
°Port: A data abstraction affiliated with an object. It has an address
and a buffer.
°Kernel: That part of an operating system which provides common
services (e.g., memory allocation) in each processor.
°Session: All of the activity (message exchange and processing) which
takes place between two or more processes for the duration of
a single task. (e.g. text edit or procgssing of a
transaction file).
°Layer: A partition in a computer network architecture model which is
assigned a specific function (e.g., session layer).

In this report emphasis will be on the relationship between FMs as
opposed to the activities of processes because many of the functions
which must be executed are independent of whether the FM is executing
(i.e., a process) as in, for example, when one FM sends a message to
another. It is of no interest to the sending FM whether the receiving
FM is executing or not.

DISTRIBUTED SYSTEM PARADIGM

Exact methods for designing distributed systems do not exist.

Solutions to the problems identified in the previous section are being

pursued in various research programs. One consequence of this situation
is that there are few examples of fully distributed systems in
operation. An objective of the NPS research program for SPLICE is to
advance our knowledge of distributed systems and to increase our
understanding of how distributed systems should be designed in order to
operate effectively. Our approach to achieving this objective, as
described in this section, is: create a paradigm, or model, of the
distributed system development process and use it as a guideline for
designing the recommended SPLICE operating system, which is described in
a later section. Furthermore, valuable insights into contemporary
distributed system design practices - some convincing an& others
questionable - were obtained from a review of other research efforts and
distributed operating system implementations. These design approaches
influenced but did not dominate the creation of the paradigm
specifications. Subsequently, the paradigm was compared with the
various designs to determine their adequacy as models for designing
distributed network operating systems (e.g., SPLICE). In addition to
contributing to the understanding of distributed systems, an additional
motivation for developing the paradigm was to focus attention on the
logical properties of a distributed system. Too often, the
determination of a distributed system architecture is driven by
available hardware configurations (e.g., bus or ring) to the detriment
of emphasizing good design procedure.

A paradigm for understanding how one could approach the design of
distributed systems is to visualize the various phases of the develop-
ment and growth of a distributed system from birth {conceptualization)

to "adulthood" (operation). If, in our imagination, we could "simulate"

the growth of a system from its birth and cbserve how the system attains
its attributes as it develops from the embryonic conceptualization

stage into a mature architecture, the record of the maturation process
could serve to identify those attributes and attribute relationships of !
a system which are critical to its effective operation. This approach

allows us to understand how the objects of the system should be nurtured

and molded in order to have the desired properties when the system
reaches maturity. In particular, we will be concerned with the
properties of a system which allow a high degree of decentralization of
control -a distributed system [Jensen 8l1]. We would expect
decentralization of control to lead to low system overhead which, in
turn, should result in high speed performance. We should expect nothing
less from a distributed system. For, if performance cannot be improved
by using a distributed approach, why bother with the additiocnal
complexity which is incurred when state information and communication
functions are distributed? That is to say, the easiest control system
to design and implement is the classical operating system structure,
where control is centralized in the supervisor and all requests for
service and resource allocation decisions must be processed by the

supervisor. We must be careful, when specifying the architecture of a

distributed system, not to fall into the trap of re-introducing much of
the rococo of centralized designs; otherwise, the goal of enhanced
performance will be defeated. Although our focus will be on distributed
system design, it should be noted that the methodology would apply

equally well to noh-distributed system design.

Conceptualization of a Distributed System

We begin the process of conceptualizing a system by identifying the
objects of the system. An object is an abstract representation of a
system entity such as a process, mcdule or resource. One definition of
an object is that it is an incarnation of a resource (Wulf 74]. This
method of representation has the great advantage of generality; it can
represent any logical system (e.g., distributed or centralized)
structure, independent of the physical implementation of the system
{Watson 81 b]. As a means of illustrating the evolution of a system, we
show a series of figures which chronicle the development of our model
system. Figure 1 shows the first stage - giving birth to general
objects, where no attributes or communication paths among the objects
have been assigned.

Next, we make these general ocbjects specific by assigning
attributes which are representative of their function. Our objects have
a name (e.g., TM) and perform a single major function (e.g., terminal
management) . Three objects of SPLICE have been created by assigning
names and functions as shown in Figqure 2.

Object Communication Requireménts

The third stage in the evolution of the ockjects intc a system is
for the objects to acquire the ability to communicate. This is accomp-
lished by connecting the objects with logical links as shown in Figure

3. A logical link is defined as a representation of the capability to

communicate between two objects. It indicates nothing about the actual
physical connection topology which may be employed, once the hardware
configuration has been defined. If four objects are involved, as shown
in Figqure 3 a, one possible logical interconnection scheme is the ring,
where direction of message flow is shown as

Figure 1 ... Initial representation of dbjects in a system

S8
Session
Services

™
Data Base
Terminal Management

Management

Figure 2 ... Associating names and functions with cbiects

Figure 3c ... Fully Connected Mesh

io

i £ s S Y MM A AR 2 1 - B

clockwise, From a logical message processing standpoint this

arrangement has two disadvantages:
(1) In order for an object to communicate with a non-adjacent object,
the message must flow through and be handled by one or more nonaddressed
objects (e.g., a message originating at 2 and addressed to 4, must flow
through 3) and (2) a broadcast message (i.e., a message addressed to all
objects) must flow through all objects before the communication is
complete (e.g., a broadcast message originating at 1, must flow through
2, 3 and 4). A message should not flow through an object if it adds
nothing of value to the message. In contrast, a message sent on the
logical bus: shown in Figure 3b., is transmitted simultaneously to all
objects on the bus, without the message having to travel through the
objects. Thus, bus transmission logic is inherently broadcast mode.
Since a bus topology is very general and flexible (i.e., a message can
be sent to any or all objects without handling and processing by
intermediaries), it provides a convenient design model for representing
a local network type of distributed system. We note, in passing, that a
fully connected mesh topology, as shown in Figure 3c, could be used for
the model, since it provides'a direct path from each object to every
other object. However, in a sizeable system, this topological
representation becomes very cluttered. More important, the number of
links in a fully connected mesh is n (n-l)/2, or on the order of n2,
where n is the number of objects.

Unfortunately, we must point out that, although the bus topology
provides a clean logical representation, this model does not necessarily
map into the physical world as the topology with the best performance.

The reason is that, in addition to being a broadcast medium, a bus is

11

e

inherently a contention access system. Because of this characteristic
and depending on the details of the hardware design, two problems could
arise which could render the bus slower than the ring: (1) the bus is
in use when a node (the physical analog of an object) wants to transmit
and (2) a node's transmission collides (i.e., overlaps) with that of
another node, causing the transmission to be aborted and rescheduled for
a later, randomly determined time.

Interestingly, the matter of communication among objects brings to
the fore one of the most controversial issues in the area of local
network technology: bus versus ring topology (Pevovar 82, Parker 83].

A basic characteristic of a bus is the physical ability to provide
broadcast communication (i.e., every node can receive the sending node's
message essentially simultaneously). The maximum delay is the
negligible signal propagation time over the length of the bus. A ring,
on the other hand, does not possess this physical capability because a
message must be serially transmitted around the ring. However, it must
be noted that logically the equivalent of a broadcast transmission can
be achieved by the sender using an address code which will cause every
node to read the message, as it circulates in the ring. Whether a bus
or ring topology does this faster or with greater throughput depends
significantly on the load [Nadkarni 83, Saltzer 81, Salwen 83, Stuck
83). With light load, there is less delay on a contention bus, relative
to a token ring, because there is high probability that a node will be
able to transmit its message immediately on the bus; also, there is no
waiting for receipt of a token, as there is on a token ring. Con-
versely, at high loads, contention is so great on a bus that the

probability is high that a node attempting to transmit will encounter

12

congestion. Indeed, there is no upper bound on delay time on a
contention bus, whereas delay time is bounded for a token ring, because
a node will be guaranteed to receive the right to transmit, via the
receipt of the token, within finite time.
Object Protocols

Once the objects of the distributed system have been ‘'given' the
ability to communicate, the manner in which they are to communicate -
the protocols - must be decided. The design of a protocol involves many
isgues concerning procedures for communication, such as the following.

°Degree of formality in arranging for communication: 1Is it possible to

simply send a message from 0i to Oj or is it necessary for oi to
first signal its intent to communicate and for 0j to agree to accept
messages from 0i (i.e., handshaking)?

°Message communication procedure: A useful model for message

communication between objects is the use of simplex (one-way) logical
links for request and reply control functions and a full duplex (two-way
simultaneous) logical link for data, similar to the link concept used in
the DEMOS operating system for the CRAY~1 computer [Baskett 77] and in
the ROSCOE Distributed Operating System at the University of Wisconsin
[Solomon 79). An illustration of this model is shown in Figqure 4a.
Although it is useful, it is unnecessarily complicated for efficient
system performance and not entirely representative of the general case
of object communication. This representation tends to artificially
partition objects into sources of requests and replies and into
requesters and servers. The Tandem Computer Corporation operating

system uses a similar representation (see Figure Sb) (Bartlett 78].

13

Y

Reply

Reguester

Regquest

Data
Figure 42 ... Object Commun:ca:ror “rotccol for DEMOS ana ROSCCE
Requester/Server Requester/Server

User Process (Data) Messages*

}]
DatA\tfak
yany

Control Messaaes**

Control Link

*Recuests, replies and data
**f g., acknowledgements, error messages, recovery messages etc.

Figure 4b ... Object Communication Protocol with Data and Control Links

04 05

ud N

User Mgssages
-} —l

Data Bus

Control Messages
-

Control Bus

Figure 4c ... Object Communication Protocol of Figure 4b Implemented on a Bus

14

In general, both requests and replies can emanate from the same
ocbject. Furthermore, an object may be a server in one instance and a
requester in another. Indeed, within the time frame of concurrent
processes, an object can be both a server and requester. For example, a
dbms module could act as a source of replies (server) when retrieving
records in response to query requests and as a source of requests
(requester) when requesting that these records be printed by a
peripheral management module. A representation of this duality of
object functions is shown in Figqure 4b. An example of an implementation
of this model on a local computer network, using a control bus for
control messages and a data bus for data messages, is described in
[Schneidewind 82] and illustrated in Figure 4c. It is interesting that
some physical implementations of local networks utilize separate data
and control busses [Kuhns 79]. It is important to note a key distinction
between the use of links as implemented in DEMOS and ROSCOE and their
use in our design. 1In the former, the links are established in advance
of communication between two objects or tasks. This approach
facilitates establishing a capability or legitimacy for sending and
receiving and for reserving buffer space at oj. In our design the
links are created upon receipt and acceptance of the first message by
Oj from oi. Since our objective is to increase speed and reduce
overhead, we feel that handshaking procedures should be cut to the bone.
We accomplish this objective via the following procedures:

°oi sends a message whenever it has one to send.

‘0j validates incoming messages as being legitimate for it to

process. Invalid messages are handled with an error message to
Q, and to the system administrator module (i.e., Recovery

i

15

1

Management (RM) Module). An acknowledgement is sent from 0j to

0i when a received message is validated at Oj.

°A certain amount of memory is dedicated to input buffer space for
oj. If the buffer is full when a message arrives, Oj will
reject it.

°A timer starts at 0i when a message is sent. If a time-out
occurs, the message is re-transmitted. If two retries fail, an
error message is sent to RM.

°Degree of asynchronism in communication: Fast communication can be

achieved if a message can be sent using an interrupt (hardware interrupt
for interprocessor or software interrupt for intra processor) to signal
the fact that a messaée has arrived at a receiving object. This
representation is shown in Figure Sa, where the operating system kernel
object 0k assists the receiving object Oj
interrupt, analyzing the priority of the incoming message and allocating

by processing the

the processor to oj, if the message is the highest in priority of any
ready processes, in a manner similar to that used in the Chorus
Operating System (Guillemont 82]. Independent of this action, the
message is stored in the dedicated buffer space of Oj. Another

service provided by O, is to replenish the buffer space of 0j from a

k
buffer pool when the amount of space falls below a pre-~determined
threshold.

In contrast, the Tandem operating system link procedure is shown in
Figure 5b [Bartlett 78]. The requester sends a message which is queued
for the server., During the LISTEN phase the server checks for the

presence of messages in the queue. If a message is present, the server

will obtain a copy of the message during the READLINK phase. Next, the

16

Control

Requester/Server) Requester/Server

Passed

0y: Operating System Kernal

Figure Sa ... Interrupt Oriven Object Communication Procedure

Requester ' Server
L L |
" Message I ‘
N S
K T
£
~T
Data Copied g %
AN
0D X

8L Result Copied WL
R I R I
EN I N
A K TK
K

Figure 5b ... Tandem Qperating System Link Procedure

17

server will return any result to the requester during the WRITELINK
phase. Finally, the requester will terminate the transaction by calling
BREAKLINK. The above procedure has the server calling LISTEN when it
wishes to check for the existence of message, rather than being notified
immediately, via an interrupt, of the presence of a high priority
message, as in Figure 5a, thus impacting on the ability to provide
real-time response.

Message Based Communication: this type of communication in a distrib-

uted system is advantages for four reasons: (1) contention for the use
of shared memory (the other major method of communicating in multi
processor systems) is eliminated. However, it should be noted that we
may simply be trading memory contention for bus contention, if a
message-based system is used on a contention bus. (2) the critical
section problem (i.e., prevention of damage of data in shared memory by
multiple processes which share the data) [Ousterhout 80] is eliminated.
(3) Operating with its own local memory for buffering messages, a
process can be activated asynchronously to send or receive a message.
This provides a high degree of concurrency because there is no need to
provide process synchronization with semaphores 6t monitors for data
protection purposes, as is the case when processes communicate via
shared memory. The very act of message exchange between sender and
receiver (i.e., send followed by acknowledgement) provides a natural
form of process synchronization [Cheriton 79, Jones 79, Moore 82, Wood
82]. (4) The message communication sub-system is the only part of the
system which must distinguish between local and remote (i.e., over a

long distance network) object access (Donnelley 79].

18

°Object Naming and Addressing: identifying (naming*) and addressing

objects in a large distributed system is a challenging task because:
(1) The user should not be burdened with remembering and providing G
objecﬁ names and addresses to the system. Achieving this objective
usually requires an elaborate system for mapping names to addresses.

In the extreme, it may even be desirable to relieve the user of knowing

the names of programs and files and to provide a data dictionary
(actually the network services directory) in the system for obtaining
the names of objects when the user provides subject key words or
character strings. More will be said about our proposed data dictionary
in a subsequent section. (2) For recovery and performance purposes,
mobility of objects is highly desirable (i.e., programs and files should
not be fixed in location or limited to affiliating with only certain
nodes). This implies that binding of names to addresses should be
deferred as long as possible (i.e., just before a message is sent)
[saltzer 82)}. (3) Significant problems arise in attempting to maintain
uniqueness of names in a large network, consisting of numerous local
networks interconnected by a long distance network (e.g., SPLICE). It
would be unreasonable to require or to expect that object names will not
be duplicated among local networks. (4) From the standpoint of software
maintenance, it is desirable to place all name-to-address mapping and

routing information in one object (i.e., name server or data

dictionary). On the other hand, from the standpoint of speed, the

necessity to access the dictionary every time a name or address is

*Although not strictly correct, names and logical addresses will be
synonymous in order to maintain consistency with previous reports.

19

required would be prohibitively slow in a network with a high message
rate.

With regard to (1), it is extremely important for an object name to
be the name of a service or module which provides the service, rather
than the name of a node or network attachment point (e.g., in ARPANET,
an IMP number and port number). If this is not the case, network
services are location and hardware device dependent. Saltzer cites the
undesirable situation in ARPANET of the name of a node or service, such
as RADC-MULTICS, being in reality a network attachment point (IMP 18,
port 0) associated with a Honeywell 68/80 host computer (Saltzer 82].

If this host were to be attached to the network through another IMP,
either the routing tables would have to be changed to reflect this fact
or the service would have to be given a new name.

The problem of binding, as mentioned in (2), can be simplified
considerably be resorting to broadcast message transmission for intra
local network communication. Many local networks (e.g., Ethernet.)
provide a broadcast mode in which all nodes will recognize a transmitted
message. In the broadcast mode a designated bit in the destination
physical address of a message can be used to indicate the broadcast
mode. When this mode is used, it is unnecessary for the sending object
to obtain the address of the receiving object. All that is needed is
the name of the receiving object, which can be obtained from a variety
of sources: user, data dictionary or task table, which associates tasks
with names (see later section). The data link layer in each receiving
object would examine the name part of the destination logical address to
determine whether the message is addressed to it, or use the kernel of

the operating system for this purpose as shown in Figure 6. When a

20

2|npoy [euoyjoung
bugataday
300y

IOSIENOAR A o~k >, 2 b . Sl A

sawey Ouysy) buirssaappy dalqp °° 9 aanby 4

abessay
(aury 32a(qo bugataony (eo] suyeluO)d) IsSeIpeoug -4 —

A

euoj3dun buyaiasay (edo]

S3|NPOK

apoN

FJOMIIN
asueysiqg
buo

3p0) NAOMIBN
Le207-uoy 03
puodsay

npoy
(IN) suopiedtummo)
Levuy ey

sng (ed1boq

(awey
139(qQ
buyatadray
ajoudy
sujejuo))
3poN
Jjouay 03
passaappy
abessay

ETTEY] apo)
122090 321A43S

| npoy
Leuo}3ouny
buipuasg

j40ddng
$32LANIS
uo$sag

$594ppyY

weN 9p0) 329l qng
1031qQ ©2}AI3S

(£40323410 S3IIANS NIOMIIN)
£aeu0)324Q e3eqQ

21

message is a true broadcast type, that is the message is intended for
all objects, the "Message Type" field will indicate this. As reported
by Shoch, the original intent of the Distributed Computing System (DCS)
- a ring network - at U.C. Irvine, was for objects to communicate by
name [Shoch 78). The success of this approach in the DCS design would
have depended on hardware to recognize a broadcast message and an
associative memory for comparing the name in the message with the names
of objects resident in a node. This hardware was not implemented. A
feasible alternative to achieving this capability is to use a software
solution in a higher level layer (i.e., data link layer mentioned above)
for determining whether a message is addressed to a particular cbject.
A bus architecture is advantageous for this method of object addressing
because its natural mode of communication is broadcast. |

In case of a message which is destined for an object located in
another network, this fact is indicated in the "Message Type" field.
This type of message would be sent in the broadcast mode, like other
messages, but only the network interface object (National Communication
(NC) Module See Figure 6) would respond to it. The physical destination
address would have been cobtained previously from the data dictionary,
with the help of Session Services, as shown in Figure 6.

The approach of using the broadcast mode of communication, coupled
with using physical addresses only in the case of remote network
communication, allows complete mobility of objects, including the NC
Module.

A solution to (3) is to allow names and addresses to be duplicated

within each local network®, but to concatenate the node address with the

* By this we mean that a name in local network A may be the same as a
name in local network B, but two names may not be the same within A or
B.

22

ham !

B

v -

network address, so that the full address is unique across the entire
network. Since a received message is examined first by physical address
and second by name, or logical address, object names may be duplicated
in local networks.

A compromise solution to the problem of (4) is to provide the names
of frequently referenced objects (i.e., local network names) in the
service table of each object; the remaining names (and physical
addresses), which pertain primarily to remote objects, are cobtained from
the data dictionary.

Object Control

In the previous section ocur objects learned how to talk. If this
communication is to be more than a babble among peer objects, some type
of control structure must be imposed. The control mechanism is complex
due to the following reasons:
°A user process may have multiple sessions active at any time.
°An FM can be active in multiple sessions at any time.
°Two or more FMs can be active in a single session.
°Message exchange between pairs of FMs can be nested. That is FM(A) may
request a service from FM (B), which may, in turn, find it has to
request a service from FM (C) in order to complete the service for FM
(A). This results in a multi-tasking mode of operation.
°Message exchange can involve remote (i.e., over the Defense Data
Network) as well as local communication.
°Some tasks are interactive, while others are completed on a deferred
basis.

Although the design philosophy is that of distributed systems, the

complexity of the processing environment requires that user terminal

23

processes be given considerable assistance in carrying out their tasks.
This assistance is provided by the Session Services (SS) Module [Bachman
78]. User terminal processes specify task requirements, largely by task
name, and with the assistance of the data dictionary, where necessary.
It is the responsibility of SS to provide the additional information and
control which are necessary in order to complete the task. This could
include the following, depending on circumstances:

°Names and addresses (as required) of the FMs which are necessary for
processing a task.

°Instructions or service codes for FM processing (to the extent that
this is known in advance).

°Invocation of the first FM (called the Controlling FM (CFM)), via a
message which could also contain user data and authorization data, if
another node is involved.

°Receipt of a completion or error code from the CFM.

Figure 7 illustrates two instances of the control structure: one where
three local FMs and one remote FM are involved and a second involving
two remote FMs. Figure 8 shows this situation in greater detail,
indicating two tasks, (1) and (2), and the invocation (FM calls) and
return paths. Control can go from SS to a CFM, local or remote, thence
to other FMs: 1local - local and local - remote but not remote - local.
This restriction pertains only to FM calling sequences; data transfer
between FMg is fully bidirectional. The degree of nesting (i.e., number
of levels of FMs which should be allowed in a network) is a major
research problem in distributed systems, which cannot be totally solved
here. In concept, the total network could be considered as one large

pool of objects which could be nested without limit, and in any

24

Figure 7

Session
Services

Local FMs

Controlling
FM

- —_ — - - -

Remote FMs

... Object Control Structure (Two Instances)

25

L —— e

Network

Layer _
User !
Application Process ;

I3
!
f

Local FMs
Terminal Qutput (1)
Presentation Management
™
Invoke/Oata (1)
Session Completion/Error
Session Services Coae (1) - f
Trvcke/Data {2)
Invoke/Zata (i)
Completion/Error
Code (2) ational
Transport Communicatio
™
Output (2) ")
(1) : Task 1
(2) : Task 2

Remote FMs
Figure 8 ... Object Invocation and Data Paths (Two Instances)

26

sequence, in order to accomplish a task. This unconstrained approach
could pose seriocus problems relative to response time performance,
security, data integrity and recovery.

PERFORMANCE EVALUATION

Now that our system has evolved to maturity, with ocbjects
identified, names and functions designated for objects, and a mechanism
established for object communication, we need some simple metrics to
evaluate the performance of our design. This will be only & brief
discussion of possible metrics, which are relatively simple to apply.
The development of analytical and simulation models for evaluating these
gystems is a complex mathematical process. A model of the local network
will be covered in a future report. Our purpose now is limited to
presenting several easy-to-apply metrics which we hope will assist in
comparing various network topologies and protocols.

The performance metrics which appear below are defined in terms of
communication among nodes (e.g., processors). This is the most
meaningful interpretation of inter object communication in a performance
context, since a message must first be addressed to a node ~ perhaps by
broadcast transmission - before the message can be received by higher
level objects (e.g., functional modules and processes). In addition,
the metrics are restricted in applicability to intra local network
communication, since inter local network performance is dependent on the
topology and delay time characteristics of the interconnecting long
distance network. The same set of metrics applies to all local networks
source or destination, with the important qualification that destination

local network performance metrics must be augmented by the metrics of

27

the long distance network (beyond the scope of this report) in order to

provide realistic measures of performance.

Selected Local Network Metrics

The metrics which are defined below are compared for bus (carrier
sense multiple access), token ring (unidirectional) and star topologies

in Table 0, for an N node network.

1. Accessibility: The number of nodes which can be reached directly

(i.e., without traversing intervening nodes) with a

single message transmitted from a given node.

2. Connectivity: The number of nodes which a given node is connected
to.

3. Average Nodes Traversed: The sum of the intervening nodes
traversed by messages transmitted by a given node,
in order to reach each of the other N-1 nodes,
divided by N-1., This quantity is directly related
to the delay time introduced by nodal processing.

4, Average Message Delivery Time: The average of the sum of the time
to acquire the medium (e.g., bus) or obtain
control (e.g., token) plus message transmission

time.

TABLE 0

LOCAL NETWORK PERFORMANCE METRICS

CSMA TOKEN
BUS RING STAR
1. Accessibility N 1 0 (Note 1)
2. Connectivity N 2 1
3. Ave. Nodes Traversed 0 (N/2) -1 1 (Note 1)
4, Ave. Message Delivery Time Ta+Tt N(Tt+Tn)-2Tn 2Tt+Tn
(Note 2) (Note 3) (Note 4)
28

Definitions

Number of nodes.

Ta: Average bus access time. This is a function of probability of
acquiring the bus which, in turn, is a function of N [Metcalfe
76].

Tt: Average transmission time on a bus or single link of
ring or star = message size in bits/bits per second transmission
rate. Signal propagation time is negligible and is ignored.

Tn: Average delay time incurred in a node of ring or star. Varies
for ring depending upon whether the toker is only passed through a
node or whether the node captures it and then transmits a message
[Tropper 81, Yuen 72]. For a star, there is only one instance of
this delay time, as the message traverses the central switching
node.

Notes

1. Assuming central node used as a switch for other nodes.

2. Bus access time + bus transmission time.

3. The time for the token to circulate one-half of the ring distance
(assuming no intervening node captures token) plus the time for the
message to be transmitted one half of the ring distance, minus two
nodal delay times to account for transmitting node not being an
intervening node in token capture and message transmission.

4. Transmission time on two links: source node to central node and

central node to destination node plus delay time in switching node.

29

As can be seen from Table 0, the bus has very good properties with
respect to a message reaching other nodes without incurring nodal delay
time Tn. Furthermore, since Tt will be equal for all local networks
with the same bandwidth, comparative performance between a bus and ring,
for example, hinges on the relationship between Ta and Tn’ Both of
these variables are a function of N (i.e., a function of total offered
load) and traffic rate. When the load is light, the probability of
acquiring the bus is high, and Ta is low relative to the time for a
node on a ring to acquire the token (function of traffic, N and Tn).

At high load, the probability of acquiring the bus is low and bus
acquisition time is unbounded. Under high load the token acquisition
time increases, but this time is bounded because a given node is
guaranteed to acquire the token in finite time by virtue of the
sequential nature of token passing.

The problem of unbounded access time for a random access bus is
solved by using a token passing bus, but at the price of incurring
higher overhead for all transmissions.

DISTRIBUTED SYSTEM DESIGN STRATEGY

Now that the paradigm has been used to: (1) explain how
distributed systems evolve, (2) identify their general properties and
(3) describe specific characteristics which are necessary for efficient
distributed system operation, we are prepared to delineate a design
strategy for achieving these characteristics. In distributed systems
and local computer network architectures, the characteristics of objects
and the manner in which these objects communicate are very important

considerations in the design of these systems. Since a distributed

e o e

system does not rely on centralized control, much of the burden of
providing effective coordination of diverse objects falls on the
communication subsystem and the method of intérprocess communication.
In order to provide reasonable response time to the user and to avoid
excessive resource consumption attributable to support functions, the
communication and interprocess subsystems should be as simple as
possible, consistent with the need to maintain state information for
recovery purposes,

With this general guideline in mind, various design principles are
listed below which are applied to the design of a distributed operating
system for SPLICE (described in a later section).

FUNCTIONAL MODULES

°A minimum amount of state information (e.g., status of transaction
processing) should be held by each FM. 1If this principle is adhered to,
it will not be necessary to reconstruct transaction status information
for the numerous FMs which could be involved in processing multiple
concurrent transactions. A better alternative to maintaining extensive
state information in individual FMs is to centralize this information in
the Session Services (SS) Module, the moduie which has responsibility
for monitoring user sessions. The centralization of recovery procedures
is an exception to the general rule of dispersing responsibility for
functions across modules in a distributed system. The primary reasoa
for this exception is that recovery requires a global view of system
status. A global view is not available from individual FMs; it is
available from Session Services. Also, changes in recovery logic would
be confined to changing SS and the recovery management (RM) module by

using this approach.

31

°Contrary to the foregoing principle concerning the preservation of

recovery information, as much processing intelligence as possible should :

be placed in each FM, thus limiting dependence on intermediary FMs and !

f reducing the associated message traffic, consistent with requirements
for modularity, recovery and transaction back-out. This policy is i
followed in order to localize decision making and to make it unnecessary

for the FMs to have frequent need for the services of an operating

system executive, thus reducing overhead delays, at the price of some
duplication of code in the FMs. In order to meet these conflicting
requirements (e.g., modularity vs. speed), it will be necessary to
decompose FMs into submodules.

°Information which is required by an FM to understand which task to

perform when a message is received and where to send the results after
the task is completed, is contained in a service table accessible by the
FM. An FM finds out what to do by processing service codes, which have
been placed in the message by SS, against the service table and passes
the result to the 'calling’ FM or to the next FM in the processing
sequence, depending upon circumstances. In addition, the table tells
the FM which transactions are legitimate for it to process and where to
report error conditions. This procedure simplifies software maintenance
by confining changes in transaction processing logic to changing the
service tables and avoiding changes to FM code.

°Session Services coordinates FM activity and provides, to the extent
possible, work instructions via the service codes it inserts in messages
to the FMs. In some cases, work breakdown cannot be completely
determined in advance by SS because the sequence of operations may be

data dependent or highly interactive. In such cases, SS merely passes

32

control to the first FM which is to perform an operation and subsequent
'‘calls' to other FMs, if any, take place according to processing
conditions. Session Services retains and maintains state information
until either a completion message or error message has been received
from the controlling FM.

Characteristics of Message Exchange Between the Sending FM [FM(S)] and
the Receiving FM [FM(R)].

°Wwhen FM(S) has a message to send, it sends it without establishing a
link with FM(R) beforehand or asking permission of FM(R) to send a
messaqge.

°FM(R) does not wait for a message; rather, it reacts to a transmitted
message by means of a call from the operating system kernel. It does
not listen for a message nor does it need to grant permission to FM(S)
to send a message.

°No exchange of messages (handshaking) takes place prior to
transmission. There is no need for this because: (1) If FM(R) is down,
FM(S) will time out and repeat the transmission until it receives an
acknowledgement from FM(R) or gives up and reports an error condition to
the Recovery Management (RM) Module or (2) FM(R) will ascertain, via
table look-up, whether this is a valid message for it to process. If
not, it will send a negative acknowledgement to FM(S) and also report it
to RM.

Operating System Kernel

°The kernel of the operating system should perform a minimum number of
tasks [Boebert 78] and only those which are common to service all FMs
residing in a processor (e.g., memory management). This is done to

minimize redundant FM code. A copy of the kernel would be resident in

33

wmiaik

each node. Any function which is unigque to an FM should be provided by
it, rather than by the kernel. The kernel acts on interrupts, as shown
in Figure 9, and allocates an FM(R) receive process to the appropriate
port. In Figure 9, a concatenation of FM(S) name and session number are
used as a port address. Each FM has a list of valid FMs with which it
is allowed to communicate, thus providing FM(R) a name to match to the
name in the received message, thus contributing to system security. The
session number is assigned by SS. In addition a sequence number, not
shown in Figure 9, is assigned by SS in order to ensure correct message
sequencing for internetwork traffic. Port buffer space is dedicated to
messages received by FMs with high input rates and dynamically allocated
for FMs with low input rates. The minimum port buffer space is equal to
the maximum message fragment size of a single message. A single copy of
reentrant code provides multiple receive processes, as shown in Figure
9. This feature, combined with the dedicated ports, allows a high
degree of message multiplexing through an FM(R).

The mechanism of Figure 9 illustrates the message oriented approach
in which no lirk is established in advance of communication between
FM(S) and FM(R) nor is agreement concerning port addresses required
before a pair of objects can communicate [Akkoyunlu 74]. With this
approach, a message is addressed to a process and implicitly to a port
by virtue of the name of the FM(S) and its associated session. The
connection - oriented approach, on the other hand, has ports which are
independent of particular processes. The former approach is used in
this design because of its lower overhead, consistent with the argument
of an earlier section about the need to reduce communication set-up

time. It should be noted that, in our design, a port is not a logical

34

Node

Receive
FM(s) Ports Processes
(
Session 1 Single \
\.’ A1 Copy of 4
FM(A) Reentrant f
< hadll o —
Session 1 B.1 /
FM(B)

Kernel

\

\-

,,___
| VO I R4
T

interrupt

FM(S) : Sending Functional Module
FM(R) : Receiving Functional Module
Port Address : X. Y, where X is name of FM(S) and Y is Session Number

Figure 9 ... Message Assignment to Ports and Use of Kernel to
Process Interrupts

35

data path for sending a message from one process to another, as in
{walden 72], but rather an identification of a storage bin at FM(R) for
gtoring and sequencing the messages from a given FM(S) and session.

The kernel supports interprocess communication with hardware
interrupts (interprocessor communication) and with software interrupts
(intraprocessor communication), as suggested in Figure 9.

Network Operating System Design

After having laid the theoretical foundation for the design of a
distributed network operating system, we turn now to the details of
implementing such a system. The emphasis in this section is on the
design of a local area network operating system (LANOS) for supporting
intra LAN communication and logistics transaction processing. Func-
tional design specifications for inter LAN communication (over the
Defense Data Network) are described in [Schneidewind 82). The operating
system design for inter LAN communication will be provided in a future
report,

This section is organized as follows:

First, Specific Operating System Design Objectives are described, in
order to key the discussion to the details of the operating system
design which follows.

The following topics are then covered:

-Interprocess Communication

-Scheduling

-Deadlock Prevention

-Memory Management

-Shared Resources and the Critical Section Problem

36

Next, the User Interface Specifications, or user view of the system, is
presented, consisting of the following:

~User Calls

-Dictionary/Directory System

Last, the computer hardware environment, in which the operating system
will operate, is given in the Computer Architecture part.

An overview of the layered operating system design is shown in Figure
10.

Operating System Design Objectives

The objectives of the design approach are speed and low overhead.
One implication of this objective is that there will not be a central
supervisor. Each processor, and functional modules which it serves,
will have its own operating system services, which will be largely
implemented in micro code for speed advantage purposes. Replication of
function and greater use of memory is the price incurred in order to
reduce overhead and increase speed.

The traditional operating system approach is for one copy of the
operating system to be available to all user processes and for the user
processes to invoke the operating system via a trap or supervisor call
instruction. The processor performs a context switch to that of the
supervisor, executes the function and returns to the user process. In a
bus-oriented multiprocessor system, the processors which do not contain
the single copy of the operating system execute much slower than the one
processor that does contain the copy of the operating system in its
local storage. This occurs because of bus contention incurred by

processors which must make remote memory accesses to the operating

37

L

User Interface

. Command Language
. Session Services

Process Management

.Inter process communication
.Interprocessor communication

.Deadlock prevention

.Critical section considerations

Shared
Resource
Management

DBMS

.File Server
.Catalog
.File Macros
.Dictionary/

{ Directory

Network
Management

.Intra LAN
Commun.
.Inter LAN
Commun .
TCP/1P

Shared
Resource
Management

Logqical RAM Management
.Transaction Work Space
Allocation/Deallocation

Memory (RAM) Management

I/0 Control
.Interrupt Handling
.Message Primitives

.Buffer Allocation/Deallocation
.First Fit Algorithm

Firmware (Non Changeable Part of Operating System)

Multiple Minicomputef Hardware

Figure 19 . . « Layered Operating System Design

38

system code, via the bus. One way to prevent performance degradation is
to provide a copy of the entire operating system in every processor's
local memory, but this may be infeasible due to the size of the
operating system and required memory size. The solution used in the
Medusa distributed operating system is to distribute the various
operating system functions (i.e., process management, memory management
and file management) to different processors. [Ousterhout 80). Each
processor is dedicated to performing a single function. Operating
system functions are invoked by messages containing parameters which
specify the desired service.

In the LAN operating system, functions are associated with each
processor and serve the functional modules which are resident in a
processor. In the extreme case, in the LANOS, there could be a single
FM per processor. This would simplify interprocess and interprocessor
communication because it would allow a single consistent interprocess
signalling method to be utilized. All communication between FMs would
be accomplished by putting a message on the bus (broadcast mode). Each
processor would read the message and copy it if it is addressed to it;
otherwise, the message is ignored. From the adaptor, the ;essage would
proceed via DMA to the processor. Unfortunately, putting a single FM in
each processor would require a minimum of eight processors. The
bandwidth required for the minicomputers contemplated for the LAN could
not be easily accommodated with existing commercially available LANSs.
More important, there would be excessive bus contention involved (i.e.,
every time a message had to be transmitted between FMs, it would have to
be placed on the bus). Therefore, FMs which have a great need to

communicate are grouped in the same minicomputer.

39

e

This will result in both interprocessor and intraprocessor signalling,
but bus traffic will be reduced significantly. Also, greater uniformity
in minicomputer capacity (i.e., RAM size and disk size) will be
achieved. This is important from a reliability and recovery standpoint
because FM size varies considerably - from a complex data management
module to a relatively simple peripheral management module. If there
were one FM per processor, either there would be enormous variation in
the capacity of individual processors, or there would be significant
wastage of processor capacity, if processors were of equal capacity. In
the former case, a failure in a large processor (where the DBMs is
resident) would not allow a smaller processor to take over the functions
of the large processor in a degraded mode. Related to this point is the
desirability of providing mobility of FMs and physical location
independence so that, depending upon the availability of hardware, FMs
can be moved from one processor to another. Furthermore, hardware
maintenance and the possibility of future hardware upgrades is
simplified by providing processors with similar, although not
necessarily identical, capacities. The nature of the interprocess and
interprocessor message communication system, which is used to implement
this concept, is described in the next section.

INTERPROCESS COMMUNICATION

1. Definitions

A. Functional Module

A functional module (FM) is a unit of software which performs
a single major function such as terminal management, data base

management, peripheral management, etc.

40

P At

D.

Process
A process is the execution of a functional module.

Interprocess Communication

The processes of two functional modules communicate when a
message is transmitted from the transmitting functional module
FM(T) to the receiving functional module FM(R).

Message

A message may be a user initiated transaction or a system

generated control message (e.g., acknowledgement).

Method of Interprocess Communication

As indicated earlier for interprocessor communication, this
occurs by the FM(T) transmitting a message on the bus, all
FM(R)s reading the message, and the addressed FM(R) copying
the message into dedicated input buffer space which is
reserved for the given FM(T). A message is transmitted when
an FM(T) has a message to transmit, as a result of completing
a processing step, and without the approval of “higher
authority." For intraprocessor communication, an SVC type of
interrupt is generated, the executive is called and
concurrently the message is stored in a dedicated input buffer
space which is reserved for the given FM(T). Every correctly
received message is acknowledged by FM(R) to FM(T) and only
one message can be unacknowledged between a pair of
communicating FMs at any instant in time. A timer is set into
operation by FM(T) when the message is sent. A message will
be retransmitted if the timer interval expires prior to the
receipt of an acknowledgement from FM(R). If this happens
three times, further communication between FM(T) and FM(R)

41

ceases and FM(T) reports the situation to the Recovery
Management (RM) module for corrective action. If FM(R) should
receive a message when its input buffer is full, it will
discard the message. In addition, FM(R) will have a duplicate
message check. Because of the stop and wait nature of the
transmigsion, FM(R) will only have to hold one message.

3. Program Control Block (PCB)

The PCB [Deitel 82] will be maintained by the Executive in each
processor. It will contain the following information concerning each
process:
°Identification

~Based on maximum number of processes allowed
°state (Ready, Blocked, Running)
°Reason for being Blocked (Put to Sleep)

-1/0 Wait

-Waiting for message acknowledgement

~Resources unavailable (lack of memory, etc.)

-Etc.
°Current number of processes
°Maximum number of processes allowed
°Register save area
°Pointers to resources being utilized (memory, I/0, disk space, etc,)
The layout of the PCB is shown in Figure 1l1l.

SCHEDULING

The LANOS is interrupt driven: a process continues to execute

unless interrupted. The highest priority ready process is always

executed after recognizing the interrupt. There is no time quantum

42

Bits
31 29 23 19 15 11 9 7 g
Process Process i
(1) 1(2) Priority I.D. |

Current Number [Max. Numper of'!

of Processes Processes
Pointer to Process
Mamory Area
Pointer to Process Disk Space Repeated
for Each
Drive Track Record Process
Program Control Register Register
Save
(Registers Area

| —

Notes

Process 1L, Process Priority, Current Numcer ¢ Processes, Max. .umber
of Processes: 100 users max.. l0 Processes rer user max.-—P 10 bits.

. (1): Process state: FReady, Zlocxed, ~unning.

. (2): Reason for process being blockea: I,/C Wait, etc.

. Pointer to Process Memory Area: Physical iddress Space limited to
16 M Bytes —» 24 bits.

Fiqure 11 ... Program Control Block Table

43

allocated to each process nor are processes executed in a round robin
fashion. The reason for this is that the system is designed to provide
transaction processing, not a general purpose, interactive, time sharing
service. This system will process various transactions at different ﬁ
priority levels. The priority is provided by the user at the terminal,

when the transaction is entered, or is inherent to the type of

transaction. The use of the processor for initiating I/0 and
recognizing and processing interrupts will take precedence over
computational processing, because the application processes are I/0
oriented. Appearing below is the process priority, going from highest
to lowest priority.
°Operating system processes

~System malfunction and recovery events

-All other operating system events on FIFO basis
°Application processes by transaction priority
°Within a priority class:

=Output from a FM

=Input to a FM
-Procegsing for a FM
Although a time quantum is not utilized, a process is not
allowed to execute indefinitely. When a process has executed for the
maximum allowable processor time, a timer interrupt will cause that
process to be put in the ready queue at its original priority level.
The data structure for the ready list is shown in Figure 12.

DEADLOCK PREVENTION

The four necessary conditions for a deadlock to occur are the

following (Coffman 71):

44

e e

Linked lists (Queues -~ FIFO)

of processes of equal priority

Highest Priority Processes

J Process 2H oo Process nH

Process 1H

. 1~

First gmcess to ® Processes always added

execute at end of list in given
priority level

Lowest Priority Processes

D

Process 2L see Process nL

Process 1L

. | o ‘#.———

1T Last process to
execute

A rrocess is deleted from its list when it blocks and is reinstated on

its list (at the end) when it unblocks.

Figure 12... Peady List Data Structure

45

(1) Processes claim exclusive control of the resources they require
(mutual exclusion condition).

(2) Processes hold resources already allocated to them while waiting
for additional resources (wait for condition).

(3) Resourxces cannot be removed from the processes holding them until
the resources are used to completion (no preemption condition).

(4) A circular chain of processes exists in which each process holds
one or more resources that are requested by the next process in the
chain (circular wait condition).

Only one of the above conditions must be violated in order to
prevent deadlock. The hethod chosen is to violate (2) by dedicating all
the space (memory and disk) to a FM and each of its submodules which
would be required to process a message from each of the FM (Ts) with
which it is currently communicating. 1In addition, there can only be one
unacknowledged message existing between a given FM(T) - FM(R) pair at
any time. FM (T) will not transmit another message to FM(R} until the
previous message has been acknowledged. A FM(R) will not need to
request more space. It will have it pre-allocated (see Figure 13). If
a message arrives due to timeout at FM(T), failure in acknowledgement,
or arrives before the buffer is cleared, the message is discarded.

Finally, (3) will be violated by preempting a process from further
use of the processor, if the amount of processor time consumed equals
the maximum allowable time. This will also prevent the indefinite
postponement problem (Deital 82).

MEMORY (RAM) MANAGEMENT

In keeping with the design objectives of speed and low overhead,

memory management will be simplified as a result of doing the following:

46

Message

Bus
-——ﬁ
Receive Receive
Physical and
Address Transmit Cory
. Adaptor to ™My, Adaptor Adaptorx
Recognition '
(on Receive) Processor 3
Logical
hddress physical Physical physical
Recognition Buffer Buffer Ruffer
(on Receive)
Logical -
T s My (T ...} FM
Buffer f;l() FMn(R) My () n(P)
{Dedicated) |
Processor 1 Processor 3
Fiqure 13 ... Buffer Allocation
47
e ST TREE S S RSN
e st o L

ik

°Input and output buffer space will be pre-allocated and dedicated to
each of the FMs with which a given FM can communicate (see Figure 1l4).
°FMs are permangntly stored in memory, but not in fixed locations (i.e.,
FMs can be relocated, depending upon the configuration which is
available and the need to relocate modules as a result of recovery
actions).

°Virtual memory or swapping are not utilized. Therefore, FMsg are not
subject to paging or swapping.

°The only dynamically allocated memory is the work space used by a FM.
The amount of workspace which is needed is determined by user demands
and is highly variable. Each FM will be assigned its own workspace, as
needed, in order to speed up execution and to avoid the use of shared
data, which would result in a critical section problem.

In addition to speed and overhead objectives, the above procedure
is used because the use of the FMs is highly predictable: at least two
FMs are used to service every user command. The frequency of use of all
FMs is high. Therefore, if dedicated RAM (and disk) were not used,
congiderable time would be lost in continually allocating this space
dynamically. The memory map is shown in Figure 14.

In order to congerve RAM space, and because all users share FMs via
the use of a terminal command language, FMs are reentrant. A memory map
table, using a first fit algorithm, and base and limit registers
{Calingaert 82], is shown in Figure 15.

SHARED RESQURCES AND THE CRITICAL SECTION PROBLEM

The critical section problem arises when two processes attempt to
access global variables simultaneously, thus destroying the jintegrity of

these variables (i.e., a given process cannot be assured as to the

48

EXEQUTIVE Not subject to change
{ ROM)
Subject to change 4
: ! EXECUTIVE]
™, Code
Dedicated FAM and
g Feentrant Code
; 3
M _Code
Input Buffer
™,

Input Buffer

|34
n

JEAv. Lecicaced RN

Cuzput bulfer

™

cutput buffer

™
n
work Space
™
s
¢ 4
; ; 1 RAM allocated dynamically
. { as needed
work Space
™,

Figure 14 ... Memory Map

49

Number of Bits

—PLase Reglster

~—————lp{ 11T Fecister

9 3 1 19
e Rionts Used/ Add
I. D. a i ress
(R.W.E.) Available
g X 1 9
1 (v} 4K
2 [t] 8K
3 P 12K
Newly 1 156K
Ailocated 4 Y -
Work 5 v 1 20K
Space . . ~ g
(Frrst = : + 4K
Fit) 7] Y b X ¥
1 ' i |aov '
y
4 [l‘ 2
127 1 H s SMsK 1
Lores
i. (me entrv fcr each 4K block in bank of 512K bytes.

Total of 128 entries.

Used = 1, Available = 2.

First fit algorithm used, in blocks of

4K bvtes.

Becinninc andé ending addresses placed i, Base Reaister anc Limit
Fegisters, respectiveiy, when process is discatched.

Figure 15

... Memory Map Table

50

values of the variables at any instant in time). The portion of the
code of a process which accesses the global variables is called its
critical section. We must ensure that mutual exclusion is guaranteed.
That is, the two processes must not be allowed to execute or enter their
critical sections at the same time.

The one place in this system where resources are shared is
described below. The solution to the critical section problem is to
employ a variant of the monitor concept (Calingaert 82]. A monitor
prevents a process from requesting a resource when that resource is
being used (i.e., it ensures mutual exclusion). It also provides a
mééhanism for the process to release resources and return them to the
resource pool. The implementation of the monitor is by means of the
Resource Allccation module, as described below.

FMs bid directly for the use of additional reusable resources
(e.g., memory, fixed head disks) which may be necessary for providing
greater work space in order to conduct multi-tasking. A small Resources
Allocation (RA) module assists the FMs in obtaining sharable rescurces.
This module is associated with the Resources Status Table (RST). The
RA, which is impleﬁented in a dedicated processor, performs the function
of shared resource allocation. It has available to it memory and fixed
disk units which it allocates to the FMs on a shared basis. Naturally,
FM processing which involves the use of shared resources will be slower
per transaction than processing which uses dedicated resources because
of transmission delays on the LAN and contention for shared resources.
However, overall throughput would be increased by utilizing shared

resourxces.

51

e ettt e enee = 2N awan o

A module only bids for the use of shared resources, when it is
presented with multiple tasks to perform and is unable to process them
concurrently without the use of additional (shared) resources. The FM
! sends a resource request to RA, via a control message on the virtual

“control bus®, giving it the type and quantity of resource desired. 1In

some cases multiple resources will bw required. The RA module sends a
"grant" message to the FM if the resource is available in the quantity
desired; RA will then subtract the acquired amount of resource from the
available quantity of resource in the RST. Upon receiving a "grant"
message, FM will set an interval timer, via its executive, to a
system-specified maximum value. Upon the expiration of this interval,
the FM returns the resources to the pool by sending a “"release" message
to RA. The RA module then adds the released resource to the quantity
available in the RST. The timer interval length can vary among FlMs,
depending upon processing priorities, and can be set by the System
Operator. An FM must bid again, if resources are required subsequent to
the release of resources. If the resource is not available in the
desired quantity, the RA sends a "denied” message to the FM, which will

continue to process with the use of dedicated local resources only. No

record is kept by RA of this bid, and the FM must rebid at a later time,
which is determined by an interrupt generated by a system-specified and
operator adjustable timer intervalvset by the FM.

All of the above descriptions pertain to the use of control
messages flowing on the "virtual” control bus. Once an FM has acquired
a resource, it will send data (file records in some cases) to be stored
in the resource unit and read data from the resource unit, with the

assistance of RA. Once assigned by the RA, and until released by the

52

RA, the resources which have been granted to a FM are the "“property" of
the FM and cannot be shared by another FM. Data messages will be
transferred on the "virtual data bus” and will be addressed to RA
according to a two level address procedure (i.e., by the node in which
RA resides and by the name of the RA module). RA must map between the
message identification, as stored in a message by the FM, and the
physical shared storage space. Upon receipt of a control message from
the FM, requesting data from the resource unit and giving the message
identification, RA will map to the physical storage locations, retrieve
the data and send it to the FM.

Although the above "contention system" of allocating shared
resources is crude in that resource requests are not queued, and
requests will not necessarily be served on a FIFO basis, it has the
great advantage of simplicity and low cost, due to the self-regulatory
nature of the scheme. As soon as recordkeeping and queue maintenance
are introduced to keep track of multiple requests = order of receipt,
type and amount of request - the complexity rises rapidly. It is
possible that sufficient dedicated local resources could be econcmically
provided to each FM, such that an overload would rarely occur, and
shared resources could be dispensed with entirely.

USER INTERFACE SPECIFICATIONS

User Calls

The following user commands, which will be expressed via a terminal
command lanquage, and implemented in the Terminal Management (TM)
module, will be provided:
°Read and display N file records.

*Write N file records.

53

°Read and print N file records.
*Write and print N file records.
°Copy N records.

°Etc.

°Invoke editor.
°Invoke application module.
°Invoke utilities and library routines,
°Etc.
°Change a file record in specified fields.
°Delete N file records.
°Insert a file record.

The above user calls will require the
as the following:

°SEND MESSAGE

°SET TIMER

°RECEIVE MESSAGE

°ACKNOWLEDGE MESSAGE

°ALLOCATE BUFFER*

calls and primitives.

JUSTIFICATION FOR SPLICE DDS

54

use of system primitives such

SDEALLOCATE BUFFER*
°ALLOCATE WORK SPACE
°DEALLOCATE WORK SPACE
SREQUEST RESOURCES
°RELEASE RESOURCES

°ETC.

*Only used when more than the normal dedicated buffer space is required.

Appropriate user and system parameters would be used with the above

SPLICE is an intricate, highly complex distributed network requiring the
coordination and management of a wide range of information resources.
The applications environment alone consists of major systems like IDA

(Integrated Disbursement and Accounting), APADE (Automated Procurement

and Date Entry), UADPS-SP (Uniform Automated Data Processing
System-Stock Points), and Trident LDS (Logistics Data System), each with
its own set of data elements, files, programs, transactions, users, and
reports. The need to manage these resources is critical, and in a
distributed system even more so since they will be dispersed
geographically and therefore more difficult to control.

One vehicle which can contribute significantly to this information
resource management is a dictionary/directory system (DDS, variously
known as "data dictionary", "data dictionary/directory”, and "meta-data
base"). A DDS is a set of one or more databases containing data about
an organization's information resources which can be retrieved and
analyzed using standard database management system (DBMS) capabilities
(e.g.: query languages and processors).

The DDS has seen widespread but inconsistent usage in centralized
processing environments [Curtice 8l1]. The primary advantages of a
well-designed DDS which are applicable to SPLICE are [Allen et al, 82]:

1. a DDS provides a documented inventory of information

resources;

2. a DDS provides a control mechanism for the analysis and

design of new information resources;

3. a DDS provides resource independence.

The documentation features of a DDS would be particularly valuable
for SPLICE. Referring again to the applications environment, a DDS
would require users and analysts to define system data elements, files,
etc. which would entail updating old definitions, discarding outdated

ones, and introducing new ones. It would, in general, provide an

55

opportunity for establishing standards of data definition and
description for application programs over the entire SPLICE system.

Once the DDS has been designed and implemented, it could serve as
the focal point for further application program analysis and design. In
particular, it could facilitate the conversion of a file-oriented
application system to a DEMS-oriented system when DBMSs eventually
become available on SPLICE. It could also assist in developing brand
new programs by cataloguing data requirements resulting from
requirements analysis activities ([Teichrcew and Hershey 77].

The ultimate power of a DDS resides in the resource independence
which it provides, that is, resources are protected from changes in
other resources (e.g.: data entities can be modified without modifying
the application programs which access them and vice versa). This allows
a high degree of resource usage flexibility which is especially vital in
a distributed environment. A SPLICE DDS which enforced uniform resource
description standards, for example, would enable large application
systems like APADE and UADPS-SP to interface much more smoothly and
conveniently.

The potential benefits of a DDS for SPLICE are significant but
caution must be exercised. Few standards exist for DDS usage within
centralized environments (Curtice 8l1] and fewer still for distributed
environments. The following sections examine some of the issues which
must be addressed in the design of a DDS for SPLICE.

SCOPE OF DDS

Dictionary directory systems have traditionally been viewed as

data-oriented and either tightly or loosely coupled with DBMSs. Only

recently has the role of a DDS been viewed in more comprehensive terms

36

ag an information resource management tool [Allen et al. 82]. 1In this
context, data is only one of the resources a DDS keeps track of. Other
regsources might include programs, files, hardware (concentrators,
multiplexors, CPUs, etc.), user accounts, and reports.

This resource-oriented approach is strongly recommended for the
SPLICE DDS over the more restrictive data-oriented concept as typified
by the COBOL DATA DIVISION or existing data description languages.
SPLICE consists of many diverse elements, all of which need to be
managed but only some of which are data elements. This is explicitly
recognized in the SPLICE specifications which call for a configuration
management system (CMS) which will store and retrieve information on
hardware, software, and documents pertaining to SPLICE configuration
[SPLICE 8l]). Clearly, the CMS is meant to serve similar functions to a
DDS for these particular resources. Incidentally, this suggests that
the SPLICE DDS might be built from the CMS, or alternatively, that the
CMS might be subsumed by the DDS.

Although a resource-oriented DDS is a generalized and flexible
tool, it raises the knotty question of "where does it fit within the
SPLICE network?" If the DDS were strictly data-oriented, it would be
easy to respond that it should be part of the data management module.
Because it contains information on where different resources are
located, however, and because several functional modules may use this
information to provide message routing or other vital system resource
allocation tasks, it can be persuasively argued that the DDS should
transcend data management and be an integral part of the network
operating system itself. Independent of the DDS‘s relation to the

operating system, however, the data management module must still be

57

invoked in order to access the DDS since this involves database access.
As a result, even though the DDS is more broadly associated with
resources, it is still reasonable to make it part of the data management
module even at the cost of possible information redundancy or access
inefficiency.

CONTENTS AND LOGICAL STRUCTURE OF DDS

Since the DDS is resource-directed, it will contain more than just
information about data. In particular, the following resources should
be represented: data, hardware, software, transactions, personnel, and
documents. Entities, attributes, and relationships associated with
these resources are presented below.

Data resource information should include the following entities:
data elements, data groups, schemas/subschemas, records, files, and
databases. Attributes for these entities must be determined by the
anticipated usage of the DDS. Typical attributes for the data element
entity are suggested by Allen et al (1982] in Table 1. These attributes
have been culled from existing commercial data dictionary/directory
systems. Attributes for the file entity have been suggested in the

SPLICE specifications [SPLICE 81] and appear in Table 2.

TABLE 1

Data Element Attributes (from Allen et al [1982])

Type Language names
Range Repetitions
Length 88 Levels
Unit of Measure Key

Usage Default value

Display format

38

TABLE 2

File Entity Attributes

File name Format (seq, random, bin)
Locations Access control
Size (in bytes) Access security protection

Relationships between data entities are also a function of
anticipated usage. One possible network structure relating data
entities is shown in Figure 16. This structure implemented in the
appropriate DBMS would allow the following queries to be answered via
conventional query languages and processors:
1. "List the record layout (all data elements and keys) for the
IDA Job Order Reference File."

2. "What locations in the network contain the Purchase
Requisition File?"

3. "What files and databases contain the data element
FEDERAL~-STOCK-NUMBER?"

4. “Where can I order PART-NUMBER = 'POQO345AKF'? "/

39

/

SCHEMA

DAIABASE

Pigure 16:

FILE

RECORD

1

S ROUP

l

ELZNENT

l

VlLU!gji

Logical Structur® Descrining Data
ReSourcas

Hardware entities and attributes have been specified as part of the
Configuration Management System (CMS) [SPLICE 81] and a selective sample
is shown in Table 3. One valuable use of the DDS regarding haxdware
resources is in displaying topological information about all or part of
the SPLICE network. One logical struct;re which might provide this |

capability within a conventional DBMS environment is given in Figure 17. |

Possible queries might include:
1. "List the number of terminals within each LAN."
2. "Which LANs have database processors?"
TABLE 3

Selected Hardware Entities and Attributes

Entities
Processing system Concentrators
Secondary storage Terminals

Communications system LAN I/O peripherals

Attributes
Type Features
Model Descripticn

Model number
Serial number
Mfger's number

Source

Recommended software entities and attributes [SPLICE 81]) are

summarized in Table 4.

transaction, and report entities is given in Figure 18,

61

Cne possible logical structure for software,

Docu. references
Usage by site
Cost

Maintenance activity

The advantage

- —

T OPOLOGY

NODE

DECCISSIE

LINC

|

SULTIPLEXOR ;

!

e 4 TERMINAL

Pigquse 17: Loaical Structuce of ri T2 Respuc-ces
(from [Aller e< al 1932))

FTLE (3| PROCESS EROC ESSUR
TRANSACTION] E2PORT

Pigure 18: Logical S*ruczucs for Software, Traasac:ions,
ard Report Resources

62

TABLE 4

Selected Software Entities and Attributes

Entities
Operating system
Operational support system
Environmental system

Application software

Attributes
Program=-id
Revision number
Revision date
Date compiled
Tyée of compiler
Patch level
Change level
License
Date released
Product number
Source
Features
Documentation
Usage
Cost

Maintenance activity

63

of this kind of structure is that one can extract data flow information
from it relatively easily. Thus a query to the effect of “construct a
data flow analysis (input files, modules/transactions, output files,
reports) for the APADE system" should be reasonable to implement.
Inclusion of these resources in the DDS contributes greatly to the
viability of the DDS as a systems analysis and design tool.

Other documents besides reports can be catalogued in the DDS as
well. Table 5 summarizes entities and attributes for various kinds of
documents [SPLICE 8l]. i

Personnel is another resource which can be included in the DDS. ’
Information about users, account numbers and access authority might be
germane as well as data about programmers, analysts, DBAs and

programs/systems which they are responsible for. Relationships between

users and other resources can occur at many levels so there is no
attempt to provide any sample structure here. This, again, will be a

function of the intended usage of the DDS.

TABLE 5

Document/Report Attributes

Name Source
Number Feature
Product number Description
Release date Quantity
Revigion number Cost

DISTRIBUTION OF THE DDS

Strongly associated with the issue of logical structure is how to

distribute the DDS within the network. The DDS itself consists of one

64

or more databases and so is subject to distribution just like any other
database. It should be noted here that, in general, distribution can
occur within, as well as across, local area networks. With SPLICE,
intra-LAN distribution will be minimized since database management is to
be centralized within each LAN [Schneidewind 82]. Databases will be
distributed across LANs, however, and the DDS may be as well.

The major problem in connection with distributing databases and, in
particular with distributing the dictionary/directory, is what degree of
distribution to implement. Two distinct approaches are generally
congidered:

1. dividing a database into partitions and locating the
partitions at the nodes where they are most likely to be used,
or

2. replicating databases and putting copies at the nodes where
they are needed.

Partitioning saves secondary storage usage but increases
access/communication costs if the partition is suboptimal {(i.e., if the
demand and supply nodes are frequently different). Replication insures
access efficiency but at the cost of increased secondary storage usage.
Furthermore, replication introduces the problem of multiple update
consistency.

Consider, for example, the hypothetical situation where a supply
officer at some NSC has run out of a particular part and wants to order
100 more. He might issue the appropriate query equivalent to "Find all
SITES where PART-NO='01037AX' and QTY-ON~-HAND 100", The DDS in

conjunction with the data management module must respond to this

65

request. The efficiency of this response depends on how the DDS is
distributed.

One possibility might be that each LAN has its own
dictionary/directory (D/D) in which case it would be necessary to poll
each LAN to see whether it satisfied the query. This is the fully
partitioned case and it is clearly costly in terms of communications
traffic when the local D/D is unable to satisfy a query.

The fully replicated case would involve a copy of a global D/D
being stored within each LAN. In this situation, the query could be
satisfied without using the Defense Data Network at all. The problem,
of course, is that every change to the D/D must be reflected at each LAN
which is again a communication-intensive operation.

A hybrid solution is to store global D/Ds at a very few nodes.
Whenever the local D/D cannot provide the information requested, it
queries the global D/D at the most proximate site. The question then
becomes "where to locate the global D/D copies?" With regard to the
kind of query posited in this example, a good choice for locating the
global DDS in the SPLICE system might be the Inventory Control Points
located at ASO Philadelphia and SPCC Mechanicsburg.

Because of the rather severe tradeoffs involved with a strictly
partitioned or strictly replicated approach, some hybrid implementation
is most likely. As a result, a distributed DDS will contain both global
and local components. This argues for a global DDS logical design which
is conducive to partitioning into local components as criteria for this

partitioning (perhaps based on functional usage) are determined.

66

L S L S,

ENVIRONMENTAL DEPENDENCY

Environmental dependency refers to the level of integration of the
DDS with other functional modules of the SPLICE system. Earlier, we
mentioned that even though the scope of the DDS transcends data
management, it is still appropriate to position the DDS within the data
management functional module. The next problem to address is the degree
to which the DDS should be coupled to a DBMS.

There are three relationships which can exist between a DDS and
DBMS [Allen et al. 82]: independent, DBMS-~application, and embedded.
The independent approach refers to a DDS which does not rely at all upon
a particular DBMS. The databases which comprise the DDS are not created
or manipulated by a DBMS and interfaces with existing DBM's are
generally minimal. The advantage is that the DDS can be uged in
environments where many different DBMS's operate. The disadvantage is
that software capabilities must be provided to perform the data
manipulation operations which would otherwise be subsumed by the DBMS.

The DBMS-application approach implies that the DDS is just another
database created and manipulated by a particular DBMS. Data
manipulation operations are performed by the DBMS but the DBMS D/D and
the DDS are separate entities. The advantage is that the full range of
DBEMS data manipulation features (query processing, report generation,
etc.) are available for DDS purposes. The disadvantage is that the DDS
is dependent upon a particular DBMS environment.

The embedded approach implies that the DDS is an integral component
of the DBMS. All data-directed operations are channeled through the D/D
and no other D/Ds exist. The trend in recent years has been towards

this fully integrated approach in centralized environments. The

67

disadvantage of integrated DDSs is that they are limited by DBMS vendor

capabilities which may not be sufficient for user needs.

The approach likely to be most suitable for the SPLICE DDS is the
DBMS~application approach. A totally independent DDS has certain
desirable properties but requires data manipulation capabilities
equivalent to those of a DBMS. This would entail a large amount of
software development to provide facilities already existing in available
DBMS packages.

The fully integrated DDS is also appealing but current integrated
systems are designed for centralized environments and are strongly
data-oriented rather than resource-oriented. It is not clear whether
they can be adapted to accommodate the expanded scope of the SPLICE DDS,.

The advantage of the DBMS-application approach is that a customized
D/D can be designed and implemented (perhaps integrating logical
structures similar to those shown in Figures 16, 17, and 18) which meets
the special needs of the SPLICE information resource environment.
Furthermore, conventional DBMS features like data description languages,
query processors, report generators, and security mechanisms provide
ready-made data description, manipulation, and control capabilities for
managing the DDS. The primary development effort in this scenario then
is one of database design rather than software development.

The major drawback of a DBMS-application DDS is that it might
adversely affect the flexibility of its distribution. If the DDS is
tied to a particular DBMS, it will not be possible to put any segment or
copy of the DDS at a node which does not have the DBMS as well. This

can be overcome either by requiring nodes to have uniform DBMS

68

v ——

capabilities or by centralizing a global D/D with few local components.
If neither of these alternatives is feasible within SPLICE, then it may
be necessary to reconsider the DDS as DBMS~independent instead.
COMPUTER ARCHITECTURE

Consistent with the approach described earlier of starting with the
logical design of the system and using it to determine the physical
implementation, the design characteristics of LANOS determine the
computer architecture of the system and not vice versa. Therefore, in
order to support a bus-oriented LAN, the following computer architecture
is needed for each installation of the LAN:

A. Local Area Networks

-Topology: Bus

~Access Method: Token bus to allow predictable response times
~-Speed: 50M bits/sec. (Hyperchannel, (NSC82))

-Message transmission and acknowledgement

-CRC error checking

B. Minicomputers

-Number: 3 per LAN installation

-Word length: 32 bits

-Logical address space: 24 bits = 16M bytes

~Physical address space: 512K bytes/memory bank

-RAM: Minimum of one 512K byte bank to maximum of 32 per
processor

=Cycle time: 200 ns.

-Addressing modes: Direct

69

c.

Microcomputers

Base register: For program relocation
Indirect: For subroutine call return
Indexed: For table manipulation
~Stack for preservation of context switch data
~16 general purpose registers for PCR, IR, indexing, base
registers, indirect addressing and arithmetic
=-DMA channels associated with LAN adaptor/buffers operated at
5M bytes/sec
-Disk controllers and disk unites operating at SM bytes/sec

-Instruction format:

. Memory
Operation Address Bank Byte

Mode _Ad Address
[6 bica | 2 bits } S5 bits 1 19 bitll

-Vector interrupt: To minimize I/0O overhead and provide for
fast context switch and for servicing interrupts generated
from interprocessor communication (start of message input)
and completion of message output and for responding to disk
completion events. (See Figure 19 for vector interrupt

table) .

~Several MC68000 class microcomputers for each LAN to support

resource allocation and communication tasks
~With a bus operating at a maximum gspeed of 50M bits/sec (5M

bytes/sec), a memory cycle time of 200 ns., a disk channel

70

speed of SM bytes/sec, and a DMA speed of 5M bytes/sec, were

chosen to keep pace with the bus speed.

CONCLUSIONS AND RECOMMENDATIONS

Operating System

As stated in the Operating System Design objectives section, the
objectives of the LANOS are two fold: (1) fast processing and (2)

reduction of operating system overhesad, It is believed that the design

accomplishes these objectives for the following reasons:
°There is minimum use of the Executive in each processor. That is,
the functional modules accomplish their assigned tasks
autonomously, without constant need to coordinate with the
Executive. In addition, each functional module does as much of
the transaction processing as possible when it has possession of a
transaction message, thus reducing the amount of functional module
interaction and consequent message exchange.
°The message-based interprocess and interprocessor communication
system, working on a software and hardware interrupt basis,
provides an asynchronous message communication system which
eliminates the message setup time required in many operating
systems which employ links, such as in DEMOS (Baskett 77).
*Many critical resources are dedicated, thus eliminating resocurce
allocation and deallocation time.

i °Multiple computers are used for the major functional modules, thus

| allowing for a high degree of parallelism.
i °A high speed bus, with matching memory, DMA and disk channel

5 speeds, provide the hardware speed necessary to accomplish and

desired objectives.

1

FESOT S

Minicomputer Bus

Supv. Call
Inst.
’5»\
e))
SVC #

Vector Interrupt. Inst.
(like RST)

oP Addr. Bank Addr. Memory Addr.*

Code Mode S bits
6 bits 2 bits

19 bits

Hardware Inte:rugts

Jup

IR
O

Software

Interrupts

N

I1/0 Completion To Interrupt
Processing
Routines

DiSK ——wmm——

Printer amem———p
Card Reader——y

Table of Jump Instructions

* First memory bank locations (£12 K bytes)

Figure 19 . . . Vector Interrupt Table

72

v

The disadvantages of the design are possible underutilization

of resources as a result of the dedication of resources policy.

Also, there are few examples of successful distributed network

operating systems.

The proposed design is, to a large extent, untested. A good deal of

simulation will have to be performed in order to test various design

assumptions and, in particular, to check the performance which can be
achieved with regard to effective bus transfer rate, message transfer
time and user response time.

As far as future expansion and enhanced use of the system is
concerned, each processor can be expanded with respect to RAM and disk
capacity, thus allowing faster functional module execution by providing
more buffer and work space per module and increased throughput by
providing more storage capacity to support additional communicating
functional module pairs. Additional processors could be added to the
bus system for performing multiprocessing of the sub-modules of a given
functional module or to provide additional functional mocdules for
supporting new applications. The primary limitation on future expansion

capabilities will be the effective bus speed which can be sustained as

processors are expanded and added to the system.

Dictionary/Directory System

Our objective has been to motivate and substantiate the need for
information resource management within the SPLICE system and suggest a
means for achieving it. This need is seen as existing on at least two

levels:

1. the operating system, the essential function of which is to

manage and allocate system resources, and

73

2. the end-user, who needs to know what information resources
exist, where they are located, and how to access them.

A dictionary/directory system is suggested as a vehicle for satisfying
both levels although most of the previous discussion was aimed at
cnd-u;oz considerations. The DDS should be resource-oriented rather
than just data-oriented if it is to satisfy the above requirements.
Since the DDS consists of databases, it is nevertheless appropriate to
place it under the aegis of the data management functional module.
Several logical structures were discussed as being relevant to the
SPLICE DDS design and it was suggested that the DDS be implemented as a
DBMS-application database in order to reduce redundant software
development.

This study leaves several questions and issues to be explored

further:

1. Requirements analysis: this involves a more detailed
specification of the kinds of information that should be in
the DDS (for both the 0OS and end-users) and the usage which
the DDS will receive; at the end-user level, this may require
the determination of resource description standards;

2, DDS design: From the requirements analysis, it will be
necessary to devise DDS schemas and determine the local and
global components of the database(s);

3. DDS interface: given a DDS design, the interfaces to other
SPLICE functional modules must be determined; this is

particularly critical at the 0S level;

74

S et

T G T S 0 AT AP %

e Ty

DA AP PTRIA 4-

ARy e SR SYWAP

STTA N e e

4. Specification of the database/file server: given the role of

a DDS, it will be necessary to continue developing
specifications for the data management module; in particular,

this must be done for the database/file server.

75

REFERENCES

(Akkoyunlu 74] Akkoyunlu, Eralp, "Interprocess Communication Facilities
for Network Operating Systems", Computer, Vol. 7, No. 6, June 1974,
pp. 46-55.

[Allen 82]) Allen, F. W., Loomis, M. E. S. and Mannino, M. W.,"The
Integrated Dictionary/Directory System", Computing Surveys, June 1982.

(Bachman 78] Bachman, Charles and Mike Canepa, "The Session Control
Layer of an Open System Interconnection”, Proceedings of Fall COMPCON,
September 1978, pp. 150-156.

[Bartlett 78] Bartlett, Joel F., "A Non-Stop* Operating System”,
Proceedings of the Eleventh International Conference on System
Sciences Vol. III, 1978, pp. 103-117.

[Baskett 77] Baskett, Forest, et al., "Task Communication in DEMOS",
Proceedings of the Sixth Symposium on Operating Systems Principles,
ACM Operating Systems Review, Vol. 11, No. 5, November 1977,

PpP. 23-31.

[Boebert 78] Boebert, W.E., et al., "Decentralized Executive Control in
Distributed Computer Systems", Proceedings of COMPSAC 78, IEEE
Computer Society, November 1978, pp. 254-258.

{Calingaert 82] Calingaert, Peter, Operating System Elements,
Prentice~Hall, 1982.

{Cheriton 79] Cheriton, David R., "Thoth, a Portable Real-Time
Operating System”, Communications of the ACM, Vol. 22, No. 2, February
1979, pp. 105-115,

[Coffman 71] Coffman, E. G., Jr., M. Elphick and A. Shoshani, "System
Deadlocks”, Computing Surveys, Vol. 13, No. 2, June 1971, pp. 67-78.

[Curtice 81] Curtice, R. M."Data Dictionaries: An Assessment of
Current Practice and Problems”, VLDB #7 Proceedings, 1981,
pP. 564-570.

[Deitel 82] Deitel, H. M., An Introduction to Operating Systems,
Addison-Wesley, 1982.

[Donnelley 79] Donnelley, Jed, "Components of a Network Operating
System", 4th Conference on Local Computer Networks, IEEE Computer
Society, October 1979, pp. 1-12.

[Guillemont 82] Guillemont, Mare, "The Chorus Distributed Operating
System: Design and Implementation", Local Computer Networks, Ravasio,
et al., (eds.), North-Holland Publishing Co., pp. 207-223.

*"Non=-Stop" is a trademark of Tandem Computers, Inc.

76

[P

—— e ave

[Jensen 8l1] Jensen, Douglas E. "Distributed Control, Distributed
Systems - Architecture and Implementation®, B.W. Tampson ed.) Springer
- Verlag, 1981, pp. 175-~190.

{Jones 79] Jones, Anita K., et al., "StarOS a Multiprocessor Operating
System for the Support of Task Forces", Proceedings of the Seventh
Symposium on Operating Systems Principles, ACM, December 1979, pp.
117-127.

[Kuhng 79] Kuhns, Richard C. and Marc C. Shoquist, "A Serial Data Bus
System for Local Processing Networks", Digest of Papers, Spring 79
COMPCON, February 1979, pp. 266-271.

[Metcalfe 76] Metcalfe, Robert M. and David R. Boggs, "“Ethernet:
Distributed Packet Switching for Local Computer Networks",
Communications of the ACM, Vol. 19, No. 7., July 1976, pp. 395~404.

(Moore 82] Moore, Lee C., et al., "Design and Implementation of a Local
Network Message Passing Protocol", 7th Conference on Local Computer
Networks, Computer Society Press, QOctober 1982, pp. 70-74.

[(Nadkarni 83] Nadkarni, Ashok V., et al., “Performance of Some Local
Area Network Technologies®™, Digest of Papers, Spring COMPCON, IEEE
Computer Society, March 1983, pp. 137-141.

{NSC82] Network Systems Corporation, HYPERchannel/TM, Systems
Description Manual, January 1982.

{Ousterhout 80] Ousterhout, John K. et al., "Medusa - An Experiment
in Distributed Operating System Structure”, Communications of the ACM,
Vol. 23, No. 2, February 1980, pp. 92-104.

(Parker 83] Prarker, Richard and Sydney F. Shapiro, "“Untangling Local
Area Networks", Computer Design, March 1983, pp. 159-172.

{pevovar 82] Pevovar, Ed and Brian McGann, "Sorting through the LAN
Morass®, Digital Design, Vol. 12, No. 11, November 1982, pp. 54-62.

(Saltzer 81] Saltzer J.H., et al., "Why a Ring?", Seventh Data
Communications Symposium, ACMSIGCOMM Computer Communications Review,
Vol. 11, No. 14, October 1981, pp. 211-217,

[Saltzer 82] Saltzer, Jerome H., "On the Naming and Birding of Network
Destinations”, Local Computer Networks, Ravasio, Piercarlo, et al.
(eds.), North-Holland Publishing Co., 1982, pp. 311-317.

(Salwen 83) Salwen, Howard C. "In Praise of Ring Architecture for Local
Area Networks", Computer Design, March 1983, pp. 183-192.

(Schneidewind 82) Schneidewind, N., "Functional Design of a Local Area
Network for the SPLICE Environment®”, NPS~54-82-003, Naval Postgraduate
School, Monterey, CA, December 1982.

(Schneidewind 83] Schneidewind, Norman F., “Functional Approach to the
Design of a Local Network: A Naval Logistics System Example”, Digest
of Papers, Spring Compcon 83, IEEE Computer Society, March 1983,
pp. 197-202.

[Shoch 78] Shock, J.F., "Internetwork Naming, Addressing and Routing",
Proceedings of COMPCON Fall 78, IEEE Computer Society, pp. 72-79.

(Solomon 79] Solomon, Marvin H. and Raphael A. Finkel, "The Roscoe
Distributed Operating Systern”", Proceedings of the Seventh Symposium on
Operating Systems Principles, ACM, December 1979, pp. 108-114.

[SPLICE 8l] Fleet Material Office, Department of the Navy, Doc. No.
F9410-9260-001-SS-SUO1l, SPLICE SYSTEM SPECIFICATIONS, 2 February 1981.

[Stuck 83] Stuck, Bart W., "Calculating the Maximum Mean Data Rate in
Local Area Networks", COMPUTER, Vol. 16, No. 5, May 1983, pp. 72-76.

[Teichroew 77] Teichroew, D. and Hershey, E., "PSL/PSA: A Computer-
Aided Technique for Structured Documentation and Analysis of
Information Processing Systems", IEEE Transactions on Software
Engineering, Vol. SE3=No. 1, January 1977, pp. 41-48.

[Tropper 81) Tropper, Carl, Local Computer Network Technologies,
Academic Press, pp. 7-18,

(walden 72] Walden, David C., "A System for Interprocess Communication
in a Resource Sharing Computer Network", Communication of the ACM,
Vol. 15, No. 4, April 1972, pp. 221-230.

[Watson 8la) Watson, Richard W. "Identifers (Naming) in Distributed
Systems®, Distributed System - Architecture and Implementation B.W.
Lampson (ed.), Springer ~ Verlag, 1981, pp. 191-210.

(watson 8l1b] Watson, Richard W., "Distributed System-Architecture
Model®™, Ibid, pp. 10-43,

[Wood 82] Wood, B.J. et al., "A Local-Area Network Architecture Based
on Message-Pagsing Operating System Concepts"”, 7th Conference on Local
Computer Networks, Computer Society Press, October 1982, pp. 59-69.

[Wulf 74] Wulf, W., et al., "HYDRA: The Kernel of a Multiprocessor
Operating System", Communications of the ACM, Vol. 17, No. 6, June
1974, pp. 337-344.

{Yuen 72] Yuen, M.L.T., et al., "Traffic Flow in a Distributed Loop
Switching System", Jerome Fox (ed.), Proceedings of the Symposium on
Computer Communications Networks and Teletraffic, Polytechic Press of
the Polytechnic Institute of Brooklyn, 1972, pp. 29-58.

78

DISTRIBUTION LIST

Lieutenant Commander Steve Bristow
Navy Management System Support Office
NAS

Norfolk, VA 23464

LCDR Ted Case

Fleet Material Support Office
Code 94L

Mechanicsburg, PA 17055

Professor Dan Dolk

Code 54Dk

Administrative Sciences Department
Naval Postgraduate School
Monterey, CA 93943

Commander Dana Fuller

Commander, Naval Supply Systems Command
Code 0415A

Washington, D.C. 20376

Dr. Harvey A. Freeman
Architecture Technology
P.O. Box 24344
Minneapolis, MN 55424

Captain Chuck Gibfried
COMNAVAIRPAC

Code 40

NAS

San Diego, CA 92135

Colonel Heidi B. Heiden

ODN Program Manager

Defense Communications Agency
Attn: DDN PMO (Code B615)
8th & S. Courthouse Roads
Washington, D.C. 20305

Professor Carl Jones

Code 54Js

Administrative Sciences Department
Naval Postgraduate School
Montezrey, CA 93943

Mg. Tan Tahn Joo

Dy Head, Software Engineering Department
Information Engineering Centre

System Computer Organisation

Ministry of Defense

Minden Road, Singapore 1024

79

Number of Copies

1

Professor Jack LaPatra

Code 54Lp

Administrative Sciences Department
Naval Postgraduate School
Monterey, CA 93943

Professor Norm Lyons

Code 54Lb

Administrative Sciences Department
Naval Postgraduate School
Monterey, CA 93943

Mr. Steve Oxman

c/o SHAPE Technical Center

United States Research

and Development Coordinating Officerxr
APO NY 09159

Professor Norman F. Schneidewind
Code 54Ss

Administrative Sciences Department
Naval Postgraduate School
Monterey, CA 93943

Ms. Mary Willoughby
P.0O. Box 94
Mendocino, CA 95460

Administrative Sciences Department
Code 54

Naval Postgraduate School
Monterey, CA 93943

Computer Center Library
Code 0141

Naval Postgraduate School
Monterey, CA 93943

Computer Science Department
Code 52

Naval Postgraduate School
Monterey, CA 93943

Defense Technical Information Center
Cameron Station
Alexandria, VA 23314

Knox Library

Code 0142

Naval Postgraduate School
Monterey, CA 93943

Number of Copies

1

Number of Copies

Office of Research Administration 1
Code 012A

Naval Postgraduate School

Monterey, CA 93943

81

